

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

ENVIRONMENTAL SCIENCE CENTER 701 MAPES ROAD FORT MEADE, MD 20755-5350

DATE

August 26, 2003

SUBJECT:

Region III Data QA Review

FROM

Fredrick Foreman

Region III ESAT RPO (3EA20)

TO

Lorie Baker

Regional Project Manager (3HS34)

Attached is the inorganic data validation report for the Elkton Farm site (Case #: 31878, SDG#: MC01P0, MC01Q7, MC01W1) completed by the Region III Environmental Services Assistance Team (ESAT) contractor under the direction of Region III EAID.

If you have any questions regarding this review, please call me at (410) 305-2629.

Attachments

cc: Chris Hartman (MDE)

TO File #: 0011

TDF#: 0823

ANALYTICAL SERVICES AND QUALITY ASSURANCE BRANCH

Lockheed Martin Information Technology
ESAT Region 3
US EPA Environmental Science Center
701 Mapes Road Ft. Meade, MD 20755-5350
Telephone 410-305-3037 Facsimile 410-305-3597

LOCKHEED MARTIN

We never forget who we're working for "

DATE:

August 22, 2003

SUBJECT:

Inorganic Data Validation (IM2 Level)

Case: 31878

SDGs: MC01P0, MC01Q7, MC01W1

Site: Elkton Farm

FROM:

Kenneth W. Curry

Inorganic Data Reviewer

C № Mahboobeh Mecanic | W

Senior Oversight Chemist

TO:

Fredrick Foreman

ESAT Region 3 Project Officer

OVERVIEW

Case 31878, Sample Delivery Groups (SDGs) MC01P0, MC01Q7 and MC01W1, from the Elkton Farm site consisted of thirty-eight (38) soil and fifteen (15) aqueous samples analyzed for total metals and cyanide (CN) in addition to five (5) aqueous samples analyzed for dissolved metals. All samples were analyzed by Ceimic Corporation (CEIMIC). The sample set included three (3) field blanks, one (1) filtrate field blank, two (2) aqueous field duplicate pairs and four (4) soil field duplicate pairs. The samples were analyzed according to Contract Laboratory Program (CLP) Statement of Work (SOW) ILM05.2 through the Routine Analytical Services (RAS) program.

SUMMARY

All samples were successfully analyzed for all required parameters with the exception of antimony (Sb) in SDGs MC01Q7 and MC01W1. Areas of concern with respect to data usability are listed below.

Positive results reported from unfiltered field blanks were utilized to evaluate samples for field contamination in total metals samples collected the same day of blank collection. Positive results reported from the filtered field blank were utilized to evaluate samples for field contamination in the dissolved metals samples.

Data for this case are impacted by outliers generated in laboratory and field blanks as well as matrix spike, laboratory duplicate and ICP serial dilution analyses. Details regarding these outliers are discussed under "Major and Minor Problems". Specific samples affected are outlined in "Table 1A" and qualified analytical results for all samples are summarized on Data Summary Form (DSFs).

MAJOR PROBLEM

Matrix spike recoveries were extremely low (<30%) for antimony (Sb) in SDGs MC01Q7 and MC01W1. Reported results for this analyte may be biased extremely low. The "L" qualifier for this outlier has been superseded by "J" or "B". Quantitation limits for this analyte in these SDGs were rejected and qualified "R" on the DSFs.

MINOR PROBLEMS

Continuing calibration and/or preparation blanks had negative values greater than the absolute value of the Method Detection Limits (MDLs) for analytes listed below. Reported results less than two times (<2X) the absolute value of the blank and quantitation limits in affected samples for these analytes may be biased low and have been qualified "L" and "UL", respectively, on the DSFs unless superseded by "J", "R" or "B".

<u>SDG</u>	Analyte(s)
MC01P0	potassium (K), cyanide (CN)
MČ01Q7	copper (Cu), CN
MC01W1	Sb, beryllium (Be), selenium (Se), silver (Ag), thallium (Tl), CN

Continuing Calibration (CCB), Preparation (PB) and/or Field (FB) Blanks had reported results greater than MDLs for analytes listed below. Reported results in affected samples which are less than or equal to five times (≤5X) blank concentrations may be biased high and have been qualified "B" on the DSF.

SDG MC01P0 MC01Q7 MC01W1	Blank CCB PB	Affected Analytes Be, cobalt (Co), copper (Cu), nickel (Ni), vanadium (V) aluminum (Al), calcium (Ca), chromium (Cr), iron (Fe), magnesium (Mg), sodium (Na)
	FB	V
MC01Q7	PB FB	Sb, lead (Pb), Ni, K, Na Ca, Na
MC01W1	CCB PB FB	arsenic (As), Be, cadmium (Cd), Pb, K, Tl Ca, Cu, Tl Na

Positive results detected between the MDL and CRQL were qualified "J" on the DSFs unless superseded by "B".

Percent Differences (%Ds) for the ICP serial dilution analyses were outside control limits (>10%) for Ni in SDG MC01Q7 and for cobalt (Co), Pb and K in SDG MC01W1. Reported results regarding these analytes are estimated and have been qualified "J" on the DSFs unless superseded by "B".

Matrix spike recoveries were low (<75%) for As, Pb, Se, Tl and CN in SDG MC01Q7. Reported results and quantitation limits for these analytes in this SDG may be biased low and have been qualified "L" and "UL", respectively, on the DSFs unless superseded by "B" or "J".

Matrix spike recovery was high (>125%) for Pb in SDG MC01W1. Reported results for this analytes in this SDG may be biased high. The "K" qualifier for this outlier has been superseded by "J" or "B" on the DSFs.

The Relative Percent Difference (RPD) for the laboratory duplicate analysis was outside control limits (35% RPD) for Pb in SDG MC01W1. Reported results for this analyte in this SDG are estimated and have been qualified "J" on the DSFs unless superseded by "B".

NOTES

Reported results for aqueous field duplicate pair MC01P1/MC01P4 were within 20% RPD, ±CRQL for all analytes except Al and Fe. Reported results for aqueous field duplicate pair MC01Q0/MC01Q2 were within 20% RPD, ±CRQL for all analytes except Fe.

Reported results for soil field duplicate pairs were within 35% RPD, ±2CRQL for all analytes except barium (Ba) and zinc (Zn) in sample pair MC01T3/MC01T7 and for iron (Fe) and manganese (Mn) in sample pair MC01X8/MC01Y0.

The reported result for Fe in the preparation blank in SDG MC01W1 was greater than the CRQL. However, the laboratory was not required to re-digest and re-analyze any samples because the concentrations of Fe in each sample in this SDG was greater than ten times (>10X) the blank concentration. No action was taken by the reviewer based on this finding.

The laboratory failed to generate Form III (Blanks) for the analytical run dated 7/12/03 in SDG MC01P0. The raw data were checked by reviewer and no outliers were detected that would affect the data. No action was taken by the reviewer based on this finding.

Data for case 31878, SDGs MC01P0, MC01Q7 and MC01W1, were reviewed in accordance with National Functional Guidelines for Evaluating Inorganic Analyses with Modification for use within Region III.

ATTACHMENTS

INFORMATION REGARDING REPORT CONTENT

Table 1A is a summary of qualifiers applied to the laboratory- generated results during data validation.

TABLE 1A	SUMMARY OF QUALIFIERS ON DATA SUMMARY FORMS AFTER
	DATA VALIDATION
TABLE 1B	CODES USED IN COMMENTS COLUMN OF TABLE 1A
APPENDIX A	GLOSSARY OF DATA QUALIFIER CODES
APPENDIX B	DATA SUMMARY FORMS
APPENDIX C	CHAIN OF CUSTODY (COC) RECORDS
APPENDIX D	LABORATORY CASE NARRATIVES

DCN: 31878IM2.wpd

CASE: 31878 SDG#: MC01P0

NON-

	SAMPLES	POSITIVE	DETECTED	•.	
NALYTE	AFFECTED	VALUES	VALUES	BIAS	COMMENTS*
Al	MC01M1, MC01M3,	В		High	PB (118.238 J μg/L)
	MC01M4, MC01N1,				
	MC01P0, MC01P1,			1	
	MC01P2, MC01P3,	•			
	MC01P4, MC01P9,		•		
• **	MC01Q0, MC01Q2				
Be	MC01M3, MC01N2	В	· · · · · · · · · · · · · · · · · · ·	High	CCB(0.2 J µg/L)
Ca	MC01M1, MC01M8,	В		High	PB (183.093 J μg/L)
	MC01N1, MC01N8,	,			•
•	MC01P5, MC01P6		· '		
Co	MC01M4, MC01P1,	В		High	CCB(0.6 J µg/L)
	MC01P3, MC01P4			Č	
•	MC01P0	R		High	CCB(0.8 J µg/L)
	MCOILO	D	,	IIIgii	CCD(0.0 J µg/L)
Cr	All Samples Except	В		High	PB (1.384 J μg/L)
	MC01N2, MC01N3,				
	MC01N4, MC01P5,	:			
*	MC01P6			;	
Cu	MC01M2 MC01N1	'n	• •	High	CCB(1.2 J μg/L)
Cu.	MC01P0	Б			CCD(1.2 J µg/L)
			- 4		
•	MC01P1, MC01P3,	В		High	CCB(0.9 J µg/L)
	MC01P4	*	, .	•	
	MC01M1, MC01P9.	В		High	CCB(1.0 J µg/L)
•	MC01Q0, MC01Q2			3	
Fe	MC01M1 MC01M2	R	-	High	PB (80.712 J μg/L)
T.'C			;	ııığıı	1 D (00.712 3 µg/L)
		-			
•		•			
	Be Ca	NALYTE AFFECTED A1 MC01M1, MC01M3, MC01M4, MC01N1, MC01P0, MC01P1, MC01P2, MC01P3, MC01P4, MC01P9, MC01Q0, MC01Q2 Be MC01M3, MC01N2 Ca MC01M1, MC01M8, MC01N1, MC01N8, MC01P5, MC01P6 Co MC01M4, MC01P1, MC01P3, MC01P4 MC01P0 MC01N2, MC01N3, MC01N4, MC01P5, MC01P6 Cu MC01M2, MC01N1, MC01P5, MC01P0 MC01P1, MC01P3, MC01P4 MC01P1, MC01P3, MC01P4 MC01P1, MC01P3, MC01P4 MC01P1, MC01P3, MC01P4 MC01M1, MC01P9, MC01Q0, MC01Q2 MC01Q0, MC01Q2	NALYTE	NALYTE AFFECTED VALUES Al MC01M1, MC01M3, MC01M4, MC01N1, MC01P0, MC01P1, MC01P2, MC01P3, MC01P4, MC01P9, MC01Q0, MC01Q2 Be MC01M3, MC01N2 B Ca MC01M1, MC01M8, MC01P1, MC01P5, MC01P6 B MC01M4, MC01P1, MC01P3, MC01P4 B Cr All Samples Except MC01N2, MC01N3, MC01N4, MC01P5, MC01P6 B MC01P1, MC01P3, MC01P4 Cu MC01M2, MC01N1, MC01P3, MC01P4 B MC01P1, MC01P3, MC01P4 B MC01P4 MC01M1, MC01P9, MC01Q2 Fe MC01M1, MC01M2, MC01M8, MC01M1, MC01P2, MC01M3, MC01M8, MC01N1, MC01P2,	NALYTE

^{*} See explanation of Comments on Table 1B.

CASE: 31878 SDG#: MC01P0

			NON-	•	
ANALYTE	SAMPLES AFFECTED	POSITIVE VALUES	DETECTED VALUES	BIAS	COMMENTS*
Mg	MC01M1, MC01M8,	В		High	PB (126.890 J μg/L)
	MC01N1, MC01N8, MC01P5, MC01P6			e e	
Ni	MC01M4	В		High	CCB(1.2 J µg/L)
K	MC01P6		UL	Low	CBN(-66.4 J µg/L)
Na	MC01P5, MC01P6	В		High	PB (143.452 J μg/L)
V	MC01P0	В	,	High	CCB(2.1 J µg/L)
	MC01P1, MC01P2, MC01P3, MC01P4, MC01P9, MC01Q0, MC01Q2	В		High	CCB(1.6 J μg/L)
•	MC01M8, MC01N1	В		High	ССВ(1.5 J µg/L)
	MC01M1, MC01M3, MC01M4	В		High	FB (2.3 J μg/L)
CN	All Samples Except MC01M1, MC01M2, MC01M3, MC01M4, MC01M8		UL	Low	PBN(-1.701 J μg/L)

^{*} See explanation of Comments on Table 1B.

PB (0.536 J mg/Kg)

PB (0.522 J mg/Kg)

MSL(72%)

ISD(11%)

ISD(11%)

High

High

TABLE 1A SUMMARY OF QUALIFIERS ON DATA SUMMARY FORM AFTER DATA VALIDATION

NON-

CASE: 31878 SDG#: MC01Q7

Ni

ANALYTE Sb	AFFECTED All Samples Except MC01Q7, MC01T4	POSITIVE VALUES	VALUES R	BIAS Extr./ Low	COMMENTS* MSE(13%)
	MC01Q7	В		High	PB (0.263 J mg/Kg) MSE(13%)
	MC01T4	, 1	,		>MDL <crql MSE(13%)</crql
As	All Samples Except MC01Q7, MC01Q8, MC01R0, MC01R1, MC01S1	L	· ·	Low	MSL(69%)
	MC01Q7, MC01Q8, MC01R0, MC01R1, MC01S1	J			>MDL <crql MSL(69%)</crql
Ca	MC01R0, MC01S1	В		High	FB (110 J μg/L)
Pb	All Samples Except MC01Q7, MC01Q8, MC01R0	L		Low	MSL(72%)
	MC01Q7, MC01R0	J		· · · · · · · · · · · · · · · · · · ·	>MDL <crql MSL(72%)</crql

В

В

MC01Q8

MC01Q8

All Samples Except MC01Q8

^{*} See explanation of Comments on Table 1B.

CASE: 31878 SDG#: MC01Q7

NON-

ANALYTE	SAMPLES AFFECTED MC0107 MC01B0	POSITIVE VALUES B	DETECTED VALUES	<u>BIAS</u> High	COMMENTS* PB (11.911 J mg/Kg)
K	MC01Q7, MC01R0, MC01R1	В		mgu	ID (II.9II J mg/kg)
Se	All Samples		UL	Low	MSL(56%)
Na	All Samples Except MC01Q8	В		High	PB (50.872 J mg/Kg)
	MC01Q8	В		High	FB (227 J μg/L)
T1	All Samples		UL	Low	MSL(70%)
CN	MC01Q7, MC01Q9, MC01R0, MC01R1, MC01R3		UL	Low	MSL(64%) CBN(-0.8 J μg/L)
	MC01R4, MC01R8, MC01R9, MC01S0,		UL	Low	MSL(64%) CBN(-1/1 J μg/L)
	MC01S1, MC01S2, MC01S6, MC01S8, MC01S9, MC01T5, MC01T6				
	MC01Q8	4 - 1 44 - 1	UL	Low	MSL(64%) CBN(-2.4 J μg/L)
	MC01T3, MC01T4, MC01T7	J			>MDL <crql MSL(64%)</crql

^{*} See explanation of Comments on Table 1B.

CASE: 31878 SDG#: MC01W1

NON-

ANALYTE Sb	SAMPLES AFFECTED All Samples	POSITIVE VALUES	DETECTED VALUES R	BIAS Extr./	COMMENTS* MSE(23%)
		•		Low	PBN(-1.070 J mg/Kg)
As	MC01R2, MC01R5, MC01R6, MC01R7,	B		High	CCB(4.9 J µg/L)
	MC01S3, MC01S5, MC01W1			(
	MC01X7, MC01X8, MC01Y0	В		High	CCB(4.5 J μg/L)
Ве	MC01X7	В		High	CCB(0.2 J μg/L)
,	MC01X8	J	· ·		>MDL <crql CBN(-0.2 J μg/L)</crql
Cd	MC01X8, MC01Y0	В		High	CCB(0.3 J µg/L)
Ca	MC01R5, MC01X8, MC01Y0	В		High	PB (23.791 J mg/Kg)
Co	All Samples	J			ISD(17%)
Cu	MC01R2, MC01R5, MC01X7, MC01X8, MC01Y0	B /		High	PB (0.736 J mg/Kg)
.Pb	All Samples Except MC01S3	J		-	DUP(43%) ISD(12%) MSH(220%)
	MC01S3	В		High	CCB(2.5 J µg/L) DUP(43%)
	1	,	•		ISD(12%) MSH(220%)

^{*} See explanation of Comments on Table 1B.

CASE: 31878 SDG#: MC01W1

	•	* -	NON-		*
•,	SAMPLES	POSITIVE	DETECTED		••
ANALYTE	<u>AFFECTED</u>	VALUES	VALUES	BIAS	COMMENTS*
K	All Samples Except	J	٦		ISD(23%)
-	MC01R2, MC01R5,				
	MC01S3, MC01X7	-		`	
•			•	* ::	
	MC01R2, MC01R5	В		High	CCB(172.2 J µg/L)
		•	•		ISD(23%)
				•	
	MC01S3, MC01X7	В		High '	CCB(236.4 J µg/L)
				•	ISD(23%)
_				_	
Se	All Samples Except		UL	Low	CBN(-12.6 J μg/L)
	MC01R2, MC01R5,				
· .	MC01R6, MC01R7,			:	
	MC01W1, MC01X8,			٠.	
	MC01Y0		Ÿ		
Ag	All Samples		UL	Low	PBN(-0.160 J mg/Kg)
Ag .	rin bampies		. OL	1.0	1 D14(-0.100 J IIIg/IAg)
Na	All Samples Except	В		High	FB (261 J μg/L)
7.37 	MC01W1				(p <i>g</i>)
			,		
	MC01W1	В .		High	FB (227 J μg/L)
•				. •	` ''
TÌ	MC01R2, MC01R5,	\mathbf{B}^{\cdot}	,	High	PB (2.325 J mg/Kg)
	MC01R7, MC01W1				
			•		
	MC01S3	B		High	PB (2.325 J mg/Kg)
. 7					CBN(-10.0 J μ g/L)
3	· · · · · · · · · · · · · · · · · · ·				
	MC01X8	В		High	CCB(12.1 J μg/L)
	MC01V7	В		Uich	CCD(12.1.T.,~/T.)
	MC01X7	D		High	CCB(12.1 J µg/L) CBN(-10.0 J µg/L)
					CDM(-10.03 h&r)

^{*} See explanation of Comments on Table 1B.

CASE: 31878 SDG#: MC01W1

	CAREET PO		NON-	,	
4 5 7 4 7 7 PONTS -	SAMPLES	- 1	DETECTED	D7.4 0	
ANALYTE	<u>AFFECTED</u>	<u>VALUES</u>	<u>VALUES</u>	<u>BIAS</u>	COMMENTS*
TI	MC01S4, MC01S5,	:	UL	Low	CBN(-10.0 J μg/L)
	MC01S7, MC01T0,		1		
	MC01T1, MC01T2,	*			
	MC01T8, MC01T9,				
	MC01W0	· /			
		•			Y .
CN	All Samples		UL	Low	PBN(-0.111 J mg/Kg)

^{*} See explanation of Comments on Table 1B.

TABLE 1B CODES USED IN COMMENTS COLUMN

- PB = Preparation blanks had results > MDL (results are in parenthesis). Reported results which are less than five times (<5X) the blank concentration may be biased high.
- CCB = Continuing calibration blanks had results > MDLs (results are in parenthesis).

 Reported results which are less than five times (<5X) the blank concentration may be biased high.
- CBN = Calibration blanks had negative results with absolute values greater than the Minimum Detection Limits (MDLs) (results are in parenthesis). Reported results less than two times (<2X) the absolute value of the blank and quantitation limits may be biased low.
- FB = Field blanks had results > MDL (results are in parenthesis). Reported results which are less than five times (<5X) the blank concentration may be biased high.
- PBN = Preparation blanks had negative results with absolute γalues greater than the MDLs (results are in parenthesis). Positive results less than two times (<2X) the absolute value of the blank and quantitation limits may be biased low.
- MSE = Matrix spike recoveries were extremely low (<30%) [% recoveries are in parenthesis]. Reported results may be biased extremely low. Quantitation limits are unusable.
- >MDL = The reported result is greater than the MDL but less than the Contract Required <CRQL Quantitation Limit (CRQL). Results are estimated.
- MSL = Matrix spike recoveries were low (<75%) [% recoveries are in parenthesis]. Reported results and quantitation limits may be biased low.
- ISD = Percent Differences (%Ds) for ICP serial dilution analyses exceeded control limits (10%) [% Ds are in parenthesis]. Reported results are estimated.
- DUP = The Relative Percent Difference (RPD) for laboratory duplicate analysis was outside control limits (35% RPD) [RPD is in parenthesis]. Reported results are estimated.
- MSH = Matrix spike recovery was high (>125%) [% recovery is in parenthesis]. Reported results may be biased high.

APPENDIX A

Glossary of Qualifier Codes

GLOSSARY OF DATA QUALIFIER CODES (INORGANIC)

CODES RELATED TO IDENTIFICATION

(confidence concerning presence or absence of analytes):

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

(NO CODE) = Confirmed identification.

- B = Not detected substantially above the level reported in laboratory or field blanks.
- R = Unusable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

CODES RELATED TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = Analyte Present. Reported value may not be accurate or precise.
- K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L = Analyte present. Reported value may be biased low.

 Actual value is expected to be higher.
- [] = Analyte present. As values approach the IDL the quantitation may not be accurate.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.
- UL = Not detected, quantitation limit is probably higher.

OTHER CODES

Q = No analytical result.

APPENDIX B

Data Summary Forms

SDG: MC01P0

Number of Soil Samples: 0

Site:

ELKTON FARM

Number of Water Samples: 20

Lab.: CEIMIC

Sample Number :		MC01M1		MC01M2		MC01M3		MC01M4		MC01M8	
Sampling Location :		DMGWD1		DMGWU1	1	DMGWU2		DMGWU3		DMGWU7	
		Filtrate of		Filtrate of		Filtrate of		Filtrate of		Filtrate of	
		MC01N1	į	MC01N2		MC01N3		MC01N4		MC01N8	
Field QC:										Field Blank	
			1								i
Matrix:		Water		Water		Water		Water		Water	ĺ
Units:		ug/L		ug/L		ug/L		ug/L		ug/L	
Date Sampled :		06/26/2003		06/26/2003		06/26/2003		06/26/2 003		06/26/2003	
Time Sampled :		12:45		10:35		10:00		11:10		10:30	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	200	171	В			148	В	99.0	В		1 :
ANTIMONY	.60	, °, 3,						,			
*ARSENIC	15							,			
BARIÚM	200	37.7	200	27.7	J	180	J	93.0	J	,	
BERYLLIUM	5					0.33	В	,			
*CADMIUM	. 5						, ?	,			
CALCIUM	5000	247	В	5440		20400		19000	1	143	В
*CHROMIUM	10	1.2	В	2.2	В	3.3	В	1.6	В	0.98	В
COBALT	50			5.2	J	34.7	j	2.5	В	j .	
COPPER	∕25 े	3.7	В	3.2	В	12.2	J 🗎	17.32	3		
IRON	100	99.0	В	66.9	В	152	В	4770	()	35.0	В
LEAD	.⊹10	49,50						- 9 i _m i,			
MAGNESIUM	5000	90.9	В	3770	J	19900		9230	l .	60.6	В
MANGANESE	15	11.9	ોંં	128	ľ	286		307			
MERCURY	0.2	'	1		İ			1	1		1
NICKEL	40			27.8	J	37.2	J	5.9	В	.	
POTASSIUM	5000	461	j	384	J	4160	J	1100	J		
SELENIUM	35					1 545					
SILVER	10]]]	
SODIUM Control of the	5000	45800	52.	5810		127000		5340		<u>.</u>	
THALLIUM	25								1		1
VANADIÚM	े ं 50	2.2	В			2.7	В	€ 2.5	В	2.3	В
ZINC	60	l "]		l]]	1
お知りない (2017) 1000	11,50	(K) 1 (V)	11 85727 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 以美		1	I	1 .			·] `.

CRQL = Contract Required Quantitation Limit

*Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor)

SDG: MC01P0

Site:

ELKTON FARM

Lab.:

CEIMIC

Sample Number :				MC01N1		MC01N2		MC01N3		MC01N4		MC01N8	
Sampling Location				GWD1		GWU1		GWU2		GWU3		GWU7	
Field QC:												Field Blank	
													1
Matrix:				Water	1	Water		Water		Water		Water	
Units:				ug/L		ug/L		ug/L		ug/L		ug/L	
Date Sampled :				06/26/2003		06/26/2003		06/26/2003		06/26/2003		06/26/2003	
Time Sampled :				12:45		10:35		10:00		11:10		10:30	
Dilution Factor:				1.0		1.0		1.0		1.0		1.0	
ANALYTE			CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM			200	199	В	4670		8910		21600			
ANTIMONY			60	,		Kurtik .		, ,				• "	
*ARSENIC			15										
BARIUM			200	, 3		49.0	J	205		216		. ,;	
BERYLLIUM			5			0.78	В	1.9	J	7.2			
*CADMIUM			5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	£ 's	0.47	J	0.99	J	2,1	J		
CALCIUM			5000	230	В	6580		22800		29200		109	В
*CHROMIUM			10	1.1.8	В	76.6		309		256		0.85	В.,
COBALT			50			10.2	J	96.3	l	47.7	J		
COPPER		()	25	4.2	В	17.1	J	115		(ii) 11.2 .	j	, 4 ' %,	
IRON			100	139	В	19200		20500		62900			
*LEAD			2310 X		(\$\frac{1}{2}\text{\$\frac{1}{2}}				કહોર્જુ		10.5		
MAGNESIUM			5000	58.9	В	5250		31500	۱ ۱	20800		16.7	В
MANGANESE	33		15	12.5	J	. 197	~\q\ ¹ ,	541	Hey	878			
MERCURY			0.2				l	0.062	J	0.090	J		
*NICKEL			40		1,91	77.2		271		163			
POTASSIUM			5000	478	j	514	J	3560	J	1700	J		
SELENIUM	4 /	٠.,	. 35		1. 5.1 1. 2.	i kirka .		20.4	J	, e e			
SILVER			10										
SODIUM		*^.	5000	47400	1000	🦑 6070 ·	. S. }	121000	,	5370			
THALLIUM			25									, ,	
VANADIUM		1779	50	2.4	В	21.2	J	38.5	J.,	67.8			
ZINC			60	27.6	J	27.5	J	83.5		185			
*CYANIDE	11 18 V	1 .\$21,5	10		υĽ		UL		UL		UL		UL

CRQL = Contract Required Quantitation Limit

*Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor)

SDG: MC01P0

Site:

ELKTON FARM

Lab.:

CEIMIC

Sample Number :		MC01P0		MC01P1		MC01P2		MC01P3		MC01P4	
Sampling Location :	1	SWT1		SWT2		SWT3		SWT4		SWT5	- 1
Field QC:	1			Field Dup. o	of					Field Dup. o	f
	1			MC01P4						MC01P1	
Matrix:		Water		Water		Water		Water		Water	1
Units:		ug/L		ug/L		ug/L		ug/L		ug/L	ļ
Date Sampled :		06/24/2003		06/24/2003		06/24/2003	:	06/24/2003		06/24/2003	
Time Sampled :	1	11:10		10:15		13:10		09:40	į	10:15	- 1
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	200	168	В	476	В	126	В	231	В	128	В
ANTIMONY	60		. '							,	
*ARSENIC	15				<u> </u>					, 1	
BARIUM	200	41.2	J	38.1	J.	30.3	J.	37.9	J	39.1	J
BERYLLIUM	5	0.35	J		1		l				
*CADMIUM	5		1.1					લકે.		, , ,	
CALCIUM	5000	6700		6060		11800		8200		6250	
*CHROMIUM	10	1.5	8	1,7	В	0.91	В	0.81	В	0.76	В
COBALT	50	1.5	В	1.2	В		1	1.2	В	1.1	В
COPPER	25	3.3	В	3.3	В	4.7	J	- 3.2	В	4.5	В
IRON	100	466		770	1 .	336	В	474		428	
*LEAO	10		X35.77						13/2	1. 1. 1/2	111
MAGNESIUM	5000	3540	J	3180	J	8070		4980	J	3330	J
MANGANESE	15	63.8	in die	55.4		34.3		82.8		54.6	
MERCURY	0.2	i ka i iye bi	··· (,,	nyang ng aga sa	. .	gar a laring risk	1	Jesan -			
*NICKEL	40 🕺	4.5	1	4.0	J	5.0	J	4.9	J	· 4.1	J
POTASSIUM	5000	1150	J	1130	J	2310	J	1590	J	1120	J
SELENIUM	35						١.	, B			
SILVER	10	0.60	J				1	535			
SODIUM	5000	14800		::::1 2700 ∈	W 3	10300		1,1800	ĺ	13200	
THALLIUM	25				1				ļ		
VANADIUM	50	2.2.5	В	2.5	В	2.6	В	21	В⊜∜	2.2	B√c
ZINC	60		,		١			2, 81 4		ا میں	stries.
CYANIDE	10	2 3 3 6	ָטנ∵	(42.50°)	UL		UL		UL	ODE DEFINIT	

CRQL = Contract Required Quantitation Limit

*Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor)

SDG: MC01P0

Site:

ELKTON FARM

Lab. :

CEIMIC

Sample Number :		MC01P5		MC01P6		MC01P9		MC01Q0		MC01Q2	
Sampling Location :		SWT6		SWT7		SWU1		SWU2		SWU4	
Field QC:		Field Blank		Field Blank				Field Dup. o	of	Field Dup. c	of
		ŀ						MC01Q2		MC01Q0	
Matrix:		Water		Water		Water		Water		Water	
Units:		ug/L		ug/L		ug/L		ug/L		ug/L	
Date Sampled :	İ	06/24/2003		06/25/2003		06/25/2003		06/25/2003		06/25/2003	
Time Sampled :	i	09:30		09:00		11:20		10:45		10:50	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	200				1	291	В	156	В	156	В
ANTIMONY	60				•	,					'
*ARSENIC	15		۱ ۱]						
BARIUM	200		ŀ		l	35.3	J	33.7	J	33.7	j
BERYLLIUM	5					ļ					
*CADMIUM	5	4.5								,	
CALCIUM	5000	110	В	106	В	12800		12400		12100	
*CHROMIUM	10	`			1	1.8	В	0.98	В	1,8	В
COBALT	50]			1				
COPPER	25		3.7	\$.*	İ	4.9	В	4.7	8	4.5	В
IRON	100				l	365	В	318	В	475	
:LEAD	10			TO LEAS	(2.3)	iko 👯 is		147 <u>11.</u> 1	36.	10 mm 1 mm 1 mm 1 mm 1 mm 1 mm 1 mm 1 m	7
MAGNESIUM	5000	27.7	В	24.8	В	8570	1 '	8410		8120	
MANGANESE	15					31.5		32.6		34.4	
MERCURY	0.2].		l				
NICKEL	40				ļ. ·	5.4	J	5.6 .	J.	4.5	J
POTASSIUM	5000				UL	3000	J	2650	J	2610	J
SELENIUM	35		٠.				ļ		,		
SILVER	10	4,500					ļ	l			
SODIUM	5000	227	В	261	В	11400		11000		10800	
THALLIUM	25			Į.		<u> </u>					
VANADIUM	50 🖓	नह के इंग्रे	1. 63.	E 1,8		2.5	В	y, 2.1 s	₿ ′	3.1	В
ZINC	60			. *,	1						
*CYANIDE	10	gr midifica.	UĿŵ	1 - 4 5	UL -		UL	1 3 2 3 3	UL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UL

CRQL = Contract Required Quantitation Limit

*Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor)

SDG : MC01Q7 ELKTON FARM Number of Soil Samples: 20

Site : Lab. :

CEIMIC

Number of Water Samples: 0

Sample Number :	MC01Q7	MC01Q8	MC01Q9	MC01R0	MC01R1
Sampling Location :	SEDT1	SEDT2	SEDT3	SEDT4	SEDT5
Field QC:		Field Dup. of			Field Dup. of
		MC01R1			MC01Q8
Matrix:	Soil	Soil	Soil	Soil	Soil
Units:	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Date Sampled :	06/24/2003	06/24/2003	06/24/2003	06/24/2003	06/24/2003
Time Sampled :	11:10	10:15	13:15	09:40	10:15
%Solids:	78.2	77.9	63.2	77.7	76.3

Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	40	768		796		8420		581		668	
ANTIMONY	12	0.23	В		R		R	1	R	, 77	R
ARSENIC	3	1.0	J	0.98	J	4.2	L	0.62	j	0.81	J
BARIUM	40	4.3	j	6.7	J ·	67.8		4.1	j	4.7	J
BERYLLIUM	1	0.11	j	0.21	j	0.79	J	0.13	J	0.21	J
CADMIUM	1	0.082	ปุ	0.17	J⊰	0.52	J	0.31	J	0.15	J
- CALCIUM	1000	155	J	328	J	604	J	107	В	163	J
CHROMIUM	2	2.9		3.2		18.3	1	2.9		3.6	
COBALT	10	0.97	j	1.4	J	8.3	j	1.2	J	1.2	J
COPPER	5.	3.8	J.S.	2.0	1,5	11.6		1,3	J,	1.4	J
IRON	20	1920		3890		11400		2050		3970	
*LEAD	2	1.9		2,3	В	19.9	L 1	1.5	J	2.0	Ţ
MAGNESIUM	1000	142	J	250	J	1980	ļ	120	J	136	J
MANGANESE	3.	28.8	i cargo,	46.6	12	364		41.4		37.0	32
MERCURY	0.1	<u> </u>	Į			0.26		1	1		
NICKEL	8.	0.95	J	1.9	В	25.0	J	1.2	J	1.3	J
POTASSIUM	1000	57.4	В	62.2	J	781	j	42.3	В	33.3	В
SELENIUM	7 .		UL	14 - 754	ULÜ		UL		UL		UL
SILVER	2			1				1.		ł	
SODIUM	1000	55.8	Β	52.3	В	86.1	В	41.0	В	25.0	В
THALLIUM	5		UL	j	UL		UL		UL		UL
VANADIÚM	10	2.7	J.	4.1	J.	17.6	1	3.1	J	4.9	J
ZINC	12	6.2	J	10.7	J	48.4		16.0	1	11.5	
CYANIDE	1_1_		UL		UL.	1	UL .	1	UL		UL

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

SDG: MC01Q7 ELKTON FARM

Site : Lab. :

CEIMIC

Sample Number :		MC01R3		MC01R4		MC01R8		MC01R9		MC01S0	
Sampling Location :		SST10		SST11		SST15		SST2	i	SST3	
Field QC:						Field Dup. o	of				
						MC01S2					
Matrix:		Soil		Soil		Soil		Soil		Soil	
Units:	i	mg/Kg		mg/Kg		mg/Kg		mg/Kg	į	mg/Kg	
Date Sampled :		06/24/2003		06/24/2003		06/24/2003		06/24/2003		06/24/2003	
Time Sampled :		12:26		13:47		11:40		09:44		10:13	
%Solids:		82.4		81.7		73.8		83.8		81.2	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	40	13900		6600		7050		80 90		7260	
ANTIMONY	12	,	R		R		R		R		R
ARSENIC	3	6.6	L	3.5	L	5.1	L	4.0	L	3.6	L
BARIUM	40	42.3	* . 4	18.4	J.	45.9		24.8	j	31.5	J
BERYLLIUM	1	0.75	J	0.40	J	0.71	J	0.63	J	0.54	J
CADMIUM	1	0.84	J	0.40	J	0.58	j	0.45	Ĵ	0.70	J
CALCIUM	1000	536	J	234	J	325	j	216	J	216	J
CHROMIUM	2	27.9		19.1		24.4		14.9		18.0	
COBALT	10	5.6	J	4.4	J	4.3	J	5.1	J	5.3	J
COPPER	5.	7.6	3	4.0	J.	8.0		5.7	3.	6.6	
IRON	20	22500	A \$ 60m 1 10	11700		15200		13000		13400	
*LEAD	2	9.1	Cont.	7.4	t.	8.6	L	4.3	Ľ Š	6.8	L
MAGNESIUM	1000	1970	13.	705	j	1550	1	1360		1010	
MANGANESE	3	- 115		102		· 83.0		. 122		121	
MERCURY	0.1	0.061	J			0.071	J				
NICKEL	8	9.8	J	4.3	J	7.2	J	6.4	J	5.6	J
POTASSIUM	1000	594	J	284	J	366	J	529	J	378	J
SELENIUM	7	1.77	UL	4. 1	UL	N	UL		UL		UL
SILVER	2		515								
SODIUM	1000	64.4	В	39.8	В	70.4	В	53.6	В	35.6	В
THALLIUM	5		UL		UL		UL		UL		UL
VANADIUM	10	33.9		19.6		28.6		22.4	1.12	20.4	
ZINC	12	28.0		11.4		34.5		18.3		56.5	
CYANIDE	<i>®</i> . 1		ÙL :		UL		UL	, . · ·	UL.	100	UL

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

SDG: MC01Q7 ELKTON FARM

Site : Lab. :

CEIMIC

Sample Number :		MC01S1		MC01S2		MC01S6		MC01S8		MC01S9	
Sampling Location :		SST4		SST5		SST9		ST10		ST11	
Field QC:				Field Dup. o	of						
				MC01R8							
Matrix:		Soil		Soil		Soil		Soil		Soil	
Units:		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :		06/24/2003		06/24/2003		06/24/2003		06/24/2003		06/24/2003	
Time Sampled :		10:52		11:40		14:20		12:09		13:42	
%Solids:		91.7		86.3		84.2		82.8		81.1	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	40	1820		9960		7610		14200		18600	
ANTIMONY	12		R	1.2	R	,	R		R.		R
ARSENIC	3	2.1	j	5.9	L.	4.1	L	5.9	L.	7.8	L
BARIUM	40	5.0	J	41.1	٠.	49.8		67,0	;	60.7	
BERYLLIUM	1	0.39	J	0.64	J	0.67	J	0.88	J	0.97	J
CADMIUM	13.43	0.45	J	0.54	J	0.34	J	0.74	J	0.86	J
CALCIUM	1000	83.6	В	307	j	556	J	662	j	698	J
CHROMIUM	2	15.0	1	20.6		15.4		22.1		27.3	
COBALT	10	2.5	J	4.3	J	3.6	J	6.4	J	6.8	J
COPPER	5 ,	3.1] j	7.4	, (s. s.	5.9	E.	7.0		7,4	
IRON	20	13200		15600		10400		19100		23400	1
TLEAD	. 2	2.2	L	7.7.	Lik	¥(%, 5.0 €	L	ું⁄,⊲11.8 ≥	Ľ,	12.3	L
MAGNESIUM	1000	163	J	1880		2090		2390	1	2510	1
MANGANESE	3.	42.2		64.5	18 m 19 m	57.2	3.	151		135	
MERCURY	0.1	İ					l	, , ,	1		1
NICKEL	. 8	2.3	j	7.9	J	6.6	J	13.5	J	13.0	J
POTASSIUM	1000	84.4	J	459	J	418	J	507	J	744	J
SELENIUM		T.	UL	1. 14. 5.	ŲĽĘ	Kirt is	ÜL	1 (2 x 2 %)	UL	<u> </u>	ŲL
SILVER	2] _	1	.					1	ļ
SODIUM	1000	23.4	В	70.1	B 35	45.8	В	74.9	В	61.6	В
THALLIUM	5		UL		UL		UL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	UL		UL
VÄNADIÜM	<i>्र</i> । ैं (10°)	10.8		31.7		22.9		30.3	3	36.7	
ZINC	12	15.9	1	24.1		19.9		37.0		36.0	1
CYANIDE	<u> </u>	1	UL		UL		UL		UL	l	UL

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

SDG: MC01Q7

Site:

ELKTON FARM

Lab.:

CEIMIC

Sample Number :		MC01T3		MC01T4		MC01T5		MC01T6		MC01T7	
Sampling Location :		ST15		ST2		ST3		ST4	İ	ST5	
Field QC:		Field Dup. o	f							Field Dup. o	of
		MC01T7		1		[MC01T3	
Matrix:		Soil		Soil		Soil		Soil		Soil	
Units:		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :		06/24/2003		06/24/2003		06/24/2003		06/24/2003		06/24/2003	
Time Sampled :		11:28		09:33		10:05		10:45		11:28	
%Solids :		83.8		85.5		81.6		81.4		83.2	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	40	15500		11900		19300		15500		14700	
ANTIMONY	12	. ,	R :	8.1	j	, 1	R		R	,	R
ARSENIC	3	7.4	L	7.6	L	6.9	L	5.8	L	4.1	L
BARIUM	40	165	4. B.	502		55.2		60.4		318	
BERYLLIUM	1	0.81	J	0.76	J	0.82	J	0.73	J	0.76	J
CADMIUM	1	1.0	X 3	120		0.83	J	0.65	J	1.2	
CALCIUM	1000	455	J	582	J	570	J	658	J	559	J
CHROMIUM	2	26.8	113	37.0		28.8	1	22.2		23.3	
COBALT	10	5.6	J	10.4		6.1	J	6.2	j	5.7	j
COPPER	5	11.5	Take Market	102	豪熱	8.5	1,7	6.7		13.3	
IRON	20	21300	Į.	22000		21500		18400		16700	
*LEAD	2	12.7	L	144	L.	10.1	Ĺ	. 10.6	L	17.5	Ľ
MAGNESIUM	1000	2740	l .	7560		2730	1	2080]	2600	
MANGANESE	3 3	96.9	$\mathcal{Z} \widetilde{\mathcal{A}}$	380	256	76,4		110		127	
MERCURY	0.1			0.59	1 .	0.071	J				
NICKEL	8	10.9	J	75.3	J	12.0	J	10.9	J	9,9	J
POTASSIUM	1000	733	J	470	J	827	j	543	J .	720	J
SELENIUM	7 :		UL :	3,27,55,12.	ŬĻ		UL	***	UL .		UL
SILVER	2		5, 7	155.12]			1		
SODIUM	1000	89.4	В 👙	89.1	В	84.4	В	50. 1	В	123 🤾	В
THALLIUM	5		UL		UL		UL		UL		UL
VANADIUM	10	36.9		27.3		37.7	*>:"	30.0		31.8	[.
ZINC	12	72.5		7280	1	51.6		38.2		132	
CYANIDE	. 54¢	% 0.30 €	J.	0.50	Ŋ,		UL		UL	0.21	J

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

SDG: MC01W1

Number of Soil Samples: 18

Site : Lab. : ELKTON FARM

Number of Water Samples: 0

CEIMIC

Sample Number :	····	MC01R2		MC01R5		MC01R6		MC01R7		MC01S3	
Sampling Location :		SST1		SST12		SST13		SST14		SST6	
Field QC:											
Matrix :		Soil		Soil		Soil		Soil		Soil	
Units:		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :		06/25/2003		06/25/2003		06/25/2003		06/25/2003		06/25/2003	
Time Sampled :		13:10		09:40		10:10		11:10		11:32	
%Solids:		90.3		83.3		89.9		90.5		90.6	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	40	6060		2700		5410		6470		2190	
ANTIMONY	12		R		R	,	R		R	, ()	R
ARSENIC	3	2.8	В	2.9	В	2.3	В	2.1	В	1.7	В
BARIUM	40	16.8	J	11.2	J	35.7	J	54.4		9.8	J
BERYLLIUM	1	0.36	J	0.33	J	0.52	J	0.72	j	0.24	J
CADMIUM	1	0.54	ij.	0.36	J	0.37	J	0.39	j	0,26	J
CALCIUM	1000	246	J	83.1	В	4760		10500		607	J
CHROMIUM	2	13.2		17.8		15,1	1	13.8		10.7]
COBALT	10	3.3	J	3.3	j	2.5	J	7.0	J	4.1	j
COPPER	5.	2.2	В	3.1	В	4.4	J	5.2		5.4	
IRON	20	14800		9780		9570	i	10700		5910	
TEAD .	2	3,1	j :	2.8	J 🚆	2.8	J	₹3.2	J	-1.8	В
MAGNESIUM	1000	541	J	294	j	2120	1	4830		598	J
MANGANESE	32	69,7	17	80.4	13/48	126	}	522		131	`
MERCURY	0.1										
NICKEL	8	3,1	3	2.5	J 😅	4.4 8	J	23.1		2.3	J
POTASSIUM	1000	172	В	119	В	247	J	279	J	125	В
SELENIUM	- 1,075		97		2 A	Mag and		, ']		UL
SILVER	2		UL	•	UL	}	UL		UL		UL
SODIUM	1000	65.3	В	21.1	В	104	В	163	В	34.7	В
THALLIUM	5	0.36	В	1.2	В		l	0.26	В	0.36	В
VANADIUM	10.	16.0	1000 867868	12.3		17.8		\$21.9	. 34	9.1	(3 , 3)
ZINC	12	10.6	J	9.8	J	12.3	1	13.7		8.2	J
CYANIDE	- 1 × 11 ×	1. H 🚓 1	UL		ប∟៊	133 . 3	UL	100	บเ	1281	UL

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

SDG : MC01W1 ELKTON FARM

Site : Lab. :

CEIMIC

Sample Number :		MC01S4		MC01S5		MC01S7		MC01T0		MC01T1	
Sampling Location :		SST7		SST8		ST1		ST12		ST13	
Field QC:] 							
Matrix:		Soil		Soil		Soil		Soil		Soil	
Units:		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :		06/25/2003		06/25/2003		06/25/2003		06/25/2003		06/25/2003	
Time Sampled :		11:57		10:40		13:05		09:35		10:05	
%Solids:		84.9		90.2		81.8		80.0		83.2	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	40	11600		9720		14400		11700		14400	Г
ANTIMONY	12		R		R		R		Ŕ	, " ,	R
ARSENIC	3	5.2		2.2	В	5.8	1	5.9	l	5.9	
BARIUM	40	26.8	J	45.7		85.5	•	79.1	1	61.5	1
BERYLLIUM	1	0.69	J	0.70	J	0.88	J	0.93	J	0.72	J
CADMIUM	4 1	0.58	J	0.45	J	0.71	J	1.6		0.63	J.
CALCIUM	1000	325	j	6690	1	695	J	442	J	1110	I
CHRÔMIUM	2	19,1	`	32.5	1	20.2		19.5		26.5	l
COBALT	10	9.2	J	4.3	J	7.5	J	7.9	J	4.7	J
COPPER	5	6.8	3.5	5.4		5.3		9.7		7.5	
IRON	20	16400	1	13100	1	18800		22700]	17400	1
LEAD	2	4.4	Ú,	5.1	J	9.5	J	29.1	J	8.7	J
MAGNESIUM	1000	1760		3260		1840		1480		2550	1
MANGANESE] 3	175		308	l ·	231		486		75,4	1
MERCURY	0.1							0.084	J		
NICKEL	8	7.8	J	7.5	J	9.8		11.0		9.5]
POTASSIUM	1000	659	J	444	J	395	J	378	J	545	J
SELENIUM	7 .	1 1	UL	1. 1. 1.	UL.	* ,, * .	UL	, ,	ÜL	Par LAS	UL:
SILVER	2		UL		UL		UL		UL	1	UL
SODIUM	1000	58.4	В	126	В	60.4	В	29.9	В	60.7	В
THALLIUM	5		UL		UL	1	UL		UL	ĺ	UL
VANADIUM	10	25.7		28.5		28,1	1	23.8	(1) (1) (1) (1)	33.0	·
ZINC	12	22.0	ì	18.0		29.1		53.4		39.4	
CYANIDE			UL	3 .	UL		UL	,	UL"	l	UL

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

SDG : MC01W1 ELKTON FARM

Site : Lab. :

CEIMIC

Sample Number :		MC01T2		MC01T8		MC01T9		MC01W0		MC01W1	
Sampling Location :		ST14		ST6		ST7		ST8		ST9	
Field QC:											
Matrix :		Soil		Soii		Soil		Soil		Soil	
Units:		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :		06/25/2003		06/25/2003		06/25/2003		06/25/2003		06/24/2003	
Time Sampled :		11:05		11:27		11:52		10:35		14:15	
%Solids:		81.6		83.3		82.4		92.0		83.9	
Dilution Factor :		1.0		1.0	;	1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	40	12700		16900		16400		16400		9690]
ANTIMONY	12		R	5	R	, ,3	R		R .	·	R
ARSENIC	3	6.8		6.2		5.1	[5.7		2.5	В
BARIUM	40.	42.2	ับ	63.2	7.	58.3		54.4	•	50.7	
BERYLLIUM	1	0.90	J	0.72	J	0.69	J	0.73	J	0.53	J
CADMIUM		0.72	j ·	0.82	J.	0.76	J i	0.67	j	0.34	J
CALCIUM	1000	1520	l	908	J	516	J	3020	Ì	870	J
CHROMIUM	2	20.3	9.30	28.2	3	22.6		25.7	·	19.5	1
COBALT	10	5.6	J	6.2	J	8.5	J	5.5	J	3.9	J
CÖPPER	5	7.1	300	6.5	**************************************	5.6	- 3	7.3		11.5	1
IRON	20	18800		22600		20900	ĺ	18100		8870	I
*LEAD	2	7.1	J	9.3	J 👯	10,3	J 📑	7.6	J	5,8	j .
MAGNESIUM	1000	2920	1	3050	i	2670		3370	i	1840	1
MANGANESE	3.3	112	L .	133	351 (1/42)	158		198		51.9	
MERCURY	0.1		[l						
NICKEL	8	11.8		13.8		11.2] ` `	10.8		7.5	J ·
POTASSIUM	1000	562	J	596	J	534	J	692	J	335	J
SELENIUM	7		UL.		ÜL	[10] [20]	UL :		UL	1.3	J
SILVER] 2		UL		UL]	UL	1	UL		UL
SODIUM	1000	69.3	В ·	59.9	B 📆	68.6	В	91.1	В	51.5	В
THALLIUM	5		UL	Ì	UL		UL		UL	0.48	В
VANADIUM	. 10	39.8	1300	35.3		32,7	1003	37.2	等级	16.3	<u> </u>
ZINC	12	26.7	1	66.2	1	95.9		28.9		24.0	1
CYANIDE		\$ U\$\$\$\$.55	ÜL :		UL		UL	in the	UL	3 1 h s	UL

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

SDG: MC01W1

Site: Lab.: ELKTON FARM CEIMIC

				MC01X7		MC01X8		MC01Y0					
Sample Number :			i	SEDU1		SEDU2		SEDU4			- 1		
Sampling Location	1:		1	SEDUI		Field Dup. o		Field Dup. o			1		
Field QC:						MC01Y0	,,	MC01X8			- 1		
Section .			1	Soil		Soil		Soil			1		
Matrix : Units :			1	mg/Kg		mg/Kg		mg/Kg			I		
				06/25/2003		06/25/2003		06/25/2003			1		
Date Sampled :				11:25		10:55		11:00			ł		
Time Sampled :				67.7		75.9		77.1			- [
%Solids :				1.0		1.0		1.0			1		
Dilution Factor :		,,,,	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ANALYTE	·		40	2250	9	940	1.25	1120	1100	1,000	1		
ANTIMONY			12		R	1	R	,,,,,,	R				
ARSENIC			3	2.4	В	0.94	В	1.8	В	•			•
BARIUM			40	16.7	Ĵ	6.3	1	10.4	J				
BERYLLIUM			1	0.18	В	0.054	Ĵ	0.15	j		I I		
CADMIUM				0.10	j	0.11	В	0.17	В	3.74			٠
,	,		1000	303	j	102	В	126	В		1 1		
CALCIUM			2	6.8		4.4	- T	3.8				,	1
COBALT			10	2.8	J	1.4	J	2.4	J				1
COPPER			5	3.6	В	1.7	В	2.3	В		1 1		•
***		•	20	5210	1	2000	1	2950	~		1 1		l
IRON			2	6.3	j	2.2	j :			`		7.6	
*LEAD MAGNESIUM			1000	688	J	259	J	197		*	1 1	,	
/ 35 / 37			3	79.4	Ĭ.,	69.2	3,48	128	`				2.5
MANGANESE		7 N	0.1	18.7	1		52,50	0.18	İ	`	1 1		* ` `
			8	7.6	, .	2.9	J :	4.3	J				1
NICKEL	*		1000	282	В	85.2		90.9	Ĵ		1		
POTASSIUM	\$6 P		7	-202 -23	UL	3 D		\$23 TX				,	
SELENIUM	`.\$.\\	. 201	2	, and	UL	***	UL		UL	1		•	1
SODIUM	*		1000	164	B	28.3	B	25.0	В	4.3		,	
	•		5	2.6	В	0.53	В		1	1			1
THALLIUM			1	6.4	l _j	2.5	1	2.9	J 3				1
VÁNADIUM		1,61	10	22.2	,	7.1	3	9.6	j	7 "			1
ZINC			1 12	22.2	UL	"	UL	3.0	UL				
"CYANIDE			1	1	105	ــــــــــــــــــــــــــــــــــــــ	I OF			MADDATIVE		L	

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

APPENDIX C

Chain of Custody (COC) Records

6	E	PA
---	---	----

USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record

Case No:

31878

R31657

R

Region:	3	Date Shipped:	6/26/2003	Chain of Custody	Record	Sampler Signature:		
Project Code: Account Code:	02T03N50102D037ZLA00	Carrier Name: Airbill:	FedEx 840878239478	Relinquished By	(Date / Time)	Received By	(Date / Time)	
CERCLIS ID:	MDD985407196	Shipped to:	Celmic Corporation	1	V.		-	
Spill ID: Site Name/State:	037Z		10 Dean Knauss Drive Narragansett RI 02882 (401) 782-8900	2				
Project Leader:	Eikton Farm TMRA/MD Alex Cox			3				
Action:	Expanded Site Investigation/RI			4				
Sampling Co:	MDE			. 4		*		

INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG No./ PRESERVATIVE/Bottles	STATION LOCATION	SAMPLE COLLEC DATE/TIME	T ORGANIC SAMPLE No.	QC Type	
MC01M1	Ground Water/ Dixon Wood	ĽG	DM (21)	1381 (HNO3), 1382 (HNO3) (2)	DMGWD1	S: 6/26/2003 12:45		MS/MSD	*
MC01M2	Ground Water/ Dixon Wood	ΠG	DM (21)	1383 (HNO3) (1)	DMGWU1	S: 6/26/2003 10:35		· <u>-</u>	
MC01M3	Ground Water/ Dixon Wood	ΓG	DM (21)	1384 (HNO3) (1)	DMGWU2	S: 6/26/2003 10:00		-	
MC01M4	Ground Water/ Dixon Wood	ΓÆ	DM (21)	1385 (HNO3) (1)	DMGWU3	S: 6/26/2003 11:10		<u>-</u>	
MC01M8	Ground Water/ Chris Hartman	ĽG	DM (21)	1389 (HNO3) (1)	DMGWU7	S: 6/26/2003 10:30			
MC01N1	Ground Water/ Dixon Wood	ĽG	CN (21), TM (21)	1392 (HNO3), 1393 (HNO3), 1851 (NaOH), 1852 (NaOH)	GWD1	S: 6/26/2003 12:45	C01N1	MS/MSD	
MC01N2	Ground Water/ Dixon Wood	L/G	CN (21), TM (21)	(4) 1404 (HNO3), 1853 (NaOH) (2)	GWU1	S: 6/26/2003 10:35	C01N2	· -	
MC01N3	Ground Water/ Dixon Wood	ĽG	CN (21), TM (21)	1409 (HNO3), 1854 (NaOH) (2)	GWU2	S: 6/26/2003 10:00	C01N3	- .	
MC01N4	Ground Water/ Oxon Wood	ĽG	CN (21), TM (21)	1414 (HNO3), 1855 (NaOH) (2)	GWU3	S: 6/26/2003 11:10	C01N4	_	
MC01N8	Ground Water/ Chris Hartman	IJĠ	CN (21), TM (21)	1434 (HNO3), 1859 (NaOH) (2)	GWU7	S: 6/26/2003 10:30	C01N8		

Shipment for Case	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:		
Complete? N	MC01M1, MC01N1				
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment iced?		
CN = Cyanide, DM = CL	P TAL Dissolved Metals+Hg ICP-AES, TM = CLP TAL Total 1	Metals	,		

TR Number: 3-592370820-062603-0001

REGION COPY

O.EDA	USEPA Contract Laboratory Inorganic Traffic Report &	, P
	Inorganic Traffic Report &	Cl

Program hain of Custody Record Case No:

DAS No:

31878

R31657

Region:	3	Date Shipped:	6/24/2003	Chain of Custody Re	ecord	Sampler Signature:		
Project Code:		Carrier Name:	FedEx	Relinguished By	(Date / Time)	Received By	(Date / Time)	
Account Code:	02T03N50102D037ZLA00	Airbili:	840878239310		,	 		
CERCLIS ID:	MDD985407196	Shipped to:	Ceimic Corporation	1	<u></u>			
Spill ID:	037Z	1	10 Dean Knauss Drive	2				
Site Name/State:	Elkton Farm TMRA/MD	-	Narragansett RI 02882	<u> </u>				
Project Leader:	Alex Cox	ł	(401) 782-8900	3			1	
Action:	Expanded Site Investigation/RI		·			1		
Sampling Co:	MDE			4				

INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG No./ PRESERVATIVE/Bottles	STATION LOCATION		COLLECT ETIME	ORGANIC SAMPLE No.	QC Type
MC01P0	Surface Water/ Dixon Wood	IJĠ	CN (21), TM (21)	1444 (HNO3), 1445 (HNO3), 1867 (NaOH), 1868 (NaOH) (4)	SWT1	S: 6/24/2003	11:10	C01P0	MS/MSD
MC01P1	Surface Water! Dixon Wood	L/G	CN (21), TM (21)	1460 (HNO3), 1869 (NaOH) (2)	SWT2	S: 6/24/2003	10:15	C01P1 /	
MC01P2	Surface Water/ Dixon Wood	ĽG	CN (21), TM (21)	1467 (HNO3), 1870 (NaOH) (2)	SWT3	S: 6/24/2003	13:10	C01P2	-
MC01P3	Surface Water/ Dixon Wood	ĽG	CN (21), TM (21)	1474 (HNO3), 1871 (NaOH) (2)	SWT4	S: 6/24/2003	9:40	C01P3	-
MC01P4	Surface Water/ Phillip Anderson	ĽG	CN (21), TM (21)	1481 (HNO3), 1872 (NaOH) (2)	SWT5	S: 6/24/2003	10:15	C01P4	We. of SwT2
MC01P5	Surface Water/ Chris Hartman	ĽG	CN (21), TM (21)	1488 (HNO3), 1873 (NaOH) (2)	SWT6	S: 6/24/2003	9:30	C01P5	Field Blank
MC01Q7	Sediment/ Dixon Wood	IJĠ	ICP/AES (21)	1539 (Ice Only) (1)	SEDT1	S: 6/24/2003	11:10	C01Q7	-
MC01Q8	Sediment/ Dixon Wood	ĽG É	ICP/AES (21)	1545 (Ice Only) (1)	SEDT2	S: 6/24/2003	10:15	C01Q8	-
MC01Q9	Sediment/ Dixon Wood	ĽG	ICP/AES (21)	1551 (Ice Only) (1)	SEDT3	S: 6/24/2003	13:15	C01Q9	. -
MC01R0	Sediment/ Dixon Wood	L∕G	ICP/AES (21)	1557 (ice Only) (1)	SEDT4	S: 6/24/2003	9:40	C01R0	-
MC01R1	Sediment/ Philip Anderson	ĽG	ICP/AES (21)	1563 (Ice Only) (1)	SEDT5	S: 6/24/2003	10:15	C01R1	OUP. OF SEOTZ

Shipment for Case	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:		
Complete? N	MC01P0, MC01R3				
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment load?		
CN = Cvanide, ICP/AES	= CLP TAL ICP-AES TM+CN, TM = CLP TAL Total Metals				

REGION COPY

EPA USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record

	~~	 	
Case No:	31878		D
DAS No:	R31657		1.
· *		٠.	

Region:	3	,		Date Shipped: 6/24/2003		Chal	in of Custody	Record		Sampler Signature:	,	
Project Code: Account Code:	h2T03N5016	1			Carrier Name: FedEx		quished By	(Date	Received By (Date / Ti			
CERCLIS ID:	MDD985407					1	1					
Spill ID: Site Name/State	037Z	TMRA/MD		10 Dean K Narragans	10 Dean Knauss Drive Narragansett RI 02882		2					
Project Leader:	Alex Cox	Alex Cox		(401) 782-8900		3				-		
Action: Sampling Co:	Expanded S MDE	ite Investiga	ation/RI			4						
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG No./ PRESERVATIVE/Bottles	STATION LOCATION			COLLECT		GANIC PLE No.	QC Type	
MC01R3	Subsurface Soil (>12")/	IJĠ	ICP/AES (21)	1575 (Ice Only) (1)	SST10	~-	S: 6/24/2003	12:26	C01R3		MS/MSD	
MC01R4	Andy Zarins Subsurface Soil	ĽG	ICP/AES (21)	1589 (Ice Only) (1)	SST11		S: 6/24/2003	13:47	C01R4		<u>-</u>	
MC01R8	(>12")/ Andy Zarins Subsurface Soil (>12")/	⊔G	ICP/AES (21)	1613 (Ice Only) (1)	SST15		S: 6/24/2003	11:40	C01R8	. •	pup of SST	
MC01R9	Andy Zarine Subsurface Soil (>12")/	ГС	ICP/AES (21)	1619 (Ice Only) (1)	SST2	Q of	S: 6/24/2003	9:44	C01R9		- "	

	(>12)1						•			*,
MC01S0	Andy Zarins Subsurface Soil	ĽG /	ICP/AES (21)	1625 (Ice Only) (1)		SST3	S: 6/24/2003	10:13	C01S0	
	(>12")/ Andy Zarins Subsurface Soil	ĽĠ	ICP/AES (21)	1631 (Ice Only) (1)	,	SST4	S: 6/24/2003	10:52	C01S1	- ,'
MC01S1	(>12")/	Ц	IOPIALS (21)	1001 (loc clay) (l)		•				•
MC01S2	Andy Zarins Subsurface Soil	ĽG	ICP/AES (21)	1637 (Ice Only) (1)		SST5	S: 6/24/2003	11:40	C01S2	
MC01S6	(>12")/ Andy Zarins Subsurface Soil (>12")/	IJĠ	ICP/AES (21)	1661 (Ice Only) (1)		SST9	s: 6/24/2003	14:20	C01S6	
MC01S8	Barbara Brown Surface Soil (0"-12")/	ne .	ICP/AES (21)	1688 (Ice Only) (1)		ST10	S: 6/24/2003	12:09	C01S8	
MC01S9	Àndy Zarins Surface Soll (0"-12")/	ĽG	ICP/AES (21)	1694 (Ice Only) (1)	j	ST11	S: 6/24/2003	13:42	C01S9	
	Andy Zarins		٠,	•			•			

	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Complete? N	MC01P0, MC01R3		
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment iced?
CN - Compide ICP/AES	= CLP TAL ICP-AES TM+CN. TM = CLP TAL Total Metals		

TR Number: 3-592370820-062403-0003

REGION COPY

F2V5.1.043 Page 2 of 3

EPA USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record

Case No:

31878

DAS No:

R31657

R

	Region:	3	Date Shipped:	6/24/2003	Chain of Custody Re	ecord	Sampler Signature:		
	Project Code:	1	Carrier Name:	FedEx	Relinquished By	(Date / Time)	Received By	(Date / Time)	
ı	7	MDD005407400	Airbili:	840878239310 Celmic Corporation	1		1		
ı	Spiii ID:	037Z	Shipped to:	10 Dean Knauss Drive					
ĺ	Site Name/State:	Elkton Farm TMRA/MD	•	Nагragansett RI 02882 (401) 782-8900					
	Project Leader:	Alex Cox	1	(401) 102:0000	3				
ı	Action:	Expanded Site Investigation/RI			4				
t	Sampling Co:	MDE			1		<u> </u>		

INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG No./ PRESERVATIVE/ Bottles	STATION LOCATION	8AMPLE COLLECT DATE/TIME	ORGANIC SAMPLE No.	QC Type
MC01T3	Surface Soil (0"-12")/	IJĠ	ICP/AES (21)	1718 (Ice Only) (1)	ST15	S: 6/24/2003 11:28	C01T3	BUP. OF STS MODITA
MC01T4	Andy Zarins Surface Soil (0"-12")/	ĽG	ICP/AES (21)	1724 (Ice Only) (1)	ST2	S: 6/24/2003 9:33	C01T4	-
MC01T5	Andy Zarins Surface Soil (0"-12")/	L/G	ICP/AES (21)	1730 (Ice Only) (1)	ST3	S: 6/24/2003 10:05	C01T5	-
MC01T6	Andy Zarins Surface Soli (0"-12")/	ĽG	ICP/AES (21)	1736 (Ice Only) (1)	ST4	S: 6/24/2003 10:45	C01T6	-
MC01T7	Andy Zarins Surface Soil (0"-12")/	ĽG	ICP/AES (21)	1742 (Ice Only) (1)	ST5	S: 6/24/2003 11:28	C01T7	.
MC01W1	Andy Zarins Surface Soil (0"-12")/ Barbara Brown	ĽG	ICPIAES (21)	1766 (Ice Only) (1)	ST9	S: 6/24/2003 14:15	C01W1	

	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Complete? N	MC01P0, MC01R3		·
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment Iced?
CN = Cyanide, ICP/AES	= CLP TAL ICP-AES TM+CN, TM = CLP TAL Total Metals		

TR Number: 3-592370820-062403-0003

REGION COPY

QEDA:	USEPA Contract Labo	oratory Program port & Chain of Custody Record
Maria 1	Inorganic Traffic Re	port & Chain of Custody Record

31878 Case No: R31657 DAS No:

Project Code:				1		` .	Signature:	
		Carrier Name: Airbill:	FedEx 840878239490	Relinquished	I By (Date	/ Time)	Received By	(Date / Time)
		Shipped to:	Ceimic Corporation	1				
•	37Z Likton Farm TMRA/MD		10 Dean Knauss Drive Narragansett RI 02882	2		-		
	Vex Cox		(401) 782-8900	3				
	Expanded Site Investigation/RI			4				
	MATRIX/ CONC/ ANALYSIS/	TAG	No./ STATION	<u> </u>	SAMPLE COLLECT	OR	BANIC	QC Type

amulania oo.	1110-					Name and Address of the Owner, which the		
INORGANIC SAMPLE No.	MATRX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG No./ PRESERVATIVE/ Bottles	STATION LOCATION	SAMPLE COLLECT DATE/TIME	ORGANIC SAMPLE No.	QC Type
MC01M1	Ground Water	L/G	DM (21)	-1381-(HNO3),-1382-(HNO3) (2)	DMGWD1			мемер у
MC01P6	Surface Water' Chris Hartman	L/G	CN (21), TM (21)	1495 (HNO3), 1874 (NaOH) (2)	SWT7	S: 6/25/2003 9:00	C01P6	Field Blank
MC01P9	Surface Water/ Dixon Wood	L/G	CN (21), TM (21)	1506 (HNO3), 1861 (NaOH) (2)	SWU1	S: 6/25/2003 11:20	C01P9	
MC01Q0	Surface Water/ Dixon Wood	, L/G	CN (21), TM (21)	1511 (HNO3), 1862 (NaOH) (2)	SWU2	S: 6/25/2003 10:45	C01Q0	
MC01Q2	Surface Water/ Dixon Wood	₽Ġ	CN (21), TM (21)	1521 (HNO3), 1864 (NaOH) (2)	SWU4	S: 6/25/2003 10:50	C01Q2	Dur. 06 5007
MC01R2	Subsurface Soil (>12")/	ΠĠ	ICP/AES (21)	1569 (Ice Only) (1)	SST1	S: 6/25/2003 13:10	C01R2	-
MC01R5	Andy Zarins Subsurface Soil (>12")/	⊔G .	ICP/AES (21)	1595 (Ice Only) (1)	SST12	S: 6/25/2003 9:40	C01R5	-
MC01R6	Andy Zarins Subsurface Soil (>12")/	ΠĠ	ICP/AES (21)	1601 (Ice Only) (1)	SST13	S: 6/25/2003 10:10	C01R6	
MC01R7	Andy Zarins Subsurface Soll (>12")/	ŊĠ	ICP/AES (21)	1607 (Ice Only) (1)	SST14	S: 6/25/2003 11:10	C01R7	-
MC01S3	Andy Zarins Subsurface Soil (>12")/	ĽG	ICP/AES (21)	1643 (Ice Only) (1)	SST6	S: 6/25/2003 11:32	C01S3	-
• •	Andy Zarins		•	/			•	*

Shipment for Case	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Complete? N	MC01M1, MC01S7		
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment load?
CN = Cyanide, DM = CL	P TAL Dissolved Metals+Hg ICP-AES, ICP/AES = CLP TALT	CP-AES TM+CN, TM = CLP TAL Total Metals	

REGION COPY

USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record

Case No: 31878 DAS No: R31657

Region:	3	Date Shipped:	0/20/2000	Chain of Custody Re	ecord	Sampler Signature:	
Project Code:	1	Carrier Name:	FedEx	Relinguished By	(Date / Time)	Received By	(Date / Time)
Account Code:	02T03N50102D037ZLA00	Airbill:	840878239490				
CERCLIS ID:	MDD985407196	Shipped to:	Celmic Corporation	[1			
Spiil ID:	037Z		10 Dean Knauss Drive	2			,
Site Name/State:	Elkton Ferm TMRA/MD	1	Narragansett RI 02882				
Project Leader:	Alex Cox		(401) 782-8900	3			. •
Action:	Expanded Site Investigation/RI					3.7	
Sampling Co:	MDE			4			

INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/	ANALYSIS/ TURNAROUND	TAG No./ PRESERVATIVE/Bottles	STATION LOCATION	8AMPLE COLLECTIME	T ORGANIC SAMPLE No.	QC Type	•
MC01S4	Subsurface Soil	L/G	ICP/AES (21)	1649 (Ice Only) (1)	\$\$17	S: 6/25/2003 11:57	C01S4		•
MC01S5	(>12")/ Andy Zarins Subsurface Soil (>12")/	ĽG	ICP/AES (21)	1655 (Ice Only) (1)	SST8	S: 6/25/2003 10:40	C01S5	-	
MC01S7	Andy Zarins Surface Soil (0"-12")/	ήG	ICP/AES (21)	1674 (Ice Only) (1)	ST1	S: 6/25/2003 13:05	C01S7	MS/MSD	•
MC01T0	Scott Morgan Surface Soi (0"-12")/	L∕G	ICP/AES (21)	1700 (Ice Only) (1)	ST12	S: 6/25/2003 9:35	C01T0	-	
MC01T1	Scott Morgan Surface Soil (0"-12")/	ĽG	ICP/AES (21)	1706 (Ice Only) (1)	ST13	S: 6/25/2003 10:05	C01T1	- <u>-</u> -	
MC01T2	Scott Morgan Surface Soil (0"-12")/	ĽG	ICP/AES (21)	1712 (Ice Only) (1)	ST14	S: 6/25/2003 11:05	C01T2	-	
MC01T8	Scott Morgan Surface Soll (0"-12")/	ĽG	ICP/AES (21)	1748 (Ice Only) (1)	ST6	S: 6/25/2003 11:27	C01T8		-
MC01T9	Scott Morgan Surface Soil (0"-12")/	ηĠ	ICP/AES (21)	1754 (Ice Only) (1)	\$ 17	S: 6/25/2003 11:52	COİT9	-	
MC01W0	Scott Morgan Surface Soil (0"-12")/	ΓÆ	ICP/AES (21)	1760 (Ice Only) (1)	ST8	S: 6/25/2003 10:35	C01W0	· 	
MC01X7	Scott Morgan Sediment/ Dixon Wood	ĽG	ICP/AES (21)	1802 (Ice Only) (1)	SEDU1	S: 6/25/2003 11:25	C01X7	-	

	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Complete? N	MC01M1, MC01S7		
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	A STATE OF THE STA	Shipment iced?
CN = Cyanide, DM = CL	P TAL Dissolved Metals+Hg ICP-AES, ICP/AES = CLP TAL 1	CP-AES TM+CN, TM = CLP TAL Total Metals	

TR Number: 3-592370820-062503-0002 **REGION CO**

SEPA USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record

Case No:		31878	D
DAS No:	•	R31657	1/

Region:	3	Data Cinppea. Cizo/2000	Chain of Custody Record	Signature:
Project Code: Account Code: 02T03N50102D037ZLA00		Carrier Name: FedEx Airbill: 840878239490	Relinquished By (Date / Time)	Received By (Date / Time)
CERCLIS ID: Spill ID:	MDD985407196 037Z	Shipped to: Celmic Corporation 10 Dean Knauss Drive	1	
Site Name/State:	Eikton Farm TMRA/MD	Narragansett RI 02882 (401) 782-8900	2	
Project Leader: Action:	Alex Cox Expanded Site Investigation/RI	(401), 02-0000	3	
Sampling Co:	MDE		4	
INORGANIC SAMPLE No.	MATRIX/ CONC/ ANALYSIS/ SAMPLER TYPE TURNAROUND	TAG No./ STATION PRESERVATIVE/ Bottles LOCATION	DATE/TIME SAM	GANIC QC IPLE No. Type
	diment/ L/G ICP/AES (21) on Wood	1806 (Ice Only) (1) SEDU2	S: 6/25/2003 10:55 C01X8	2.60.1

1814 (Ice Only) (1)

Shipment for Case Complete? N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):		Chain of Custody Seal Number:
Compositive	MC01M1, MC01S7			
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	*	Shipment load?
CN = Cyanide, DM = CL	P TAL Dissolved Metals+Hg ICP-AES, ICP/AES = CLP TAL	ICP-AES TM+CN, TM = CLP TAL Total Metals		

TR Number: 3-592370820-062503-0002

MC01Y0

Sediment/

Dixon Wood

L/G

REGION COPY

F2V5.1.043 Page 3 of 3

U.S. EPA Region III Sample Scheduling Request Form

RAS CASE No: CT1854 /3/878 DAS No:				NSF No:	
Date: 6/18/03 Data Validation Level: M3, IM2				EPA Lab Reply:	
Site Name: Elkton Farm				QAPP/SAP Info:	
Address: 183 Zeitler Road		City: Elkton			State: Maryland
Latitude:		Longitude:		Anai +Val Data TAT: 45 DAYS	
Program: CERCLA		CERCLIS No: MDD985407196		Activity: SI	
Account No: 03T03N50102D037ZLA00		Operable Unit:		Spill ID:	
Preparer: Chris Hartman		RPM/PO:Lorie Baker		Site Leader: Alex Cox	
Phone: 410-537-3453		Phone: 215-814-3355		Phone: 410-537-3493	
FAX: 410-537-3472		FAX:		FAX: 410-537-3472	
E-mail: chartman@mde.state.md.us		E-mail:		E-mail: acox@mde.state.md.us	
EPA CO:		Contract Type: Prime: MDE		Sub:	
Lab Assignment	Date:	Analytical TAT: 21 Days		Ship Date From: 6/23/03	
Organic Lab:				Ship Date To: 6/27/03	
Inorganic Lab:				Carrier:	
SAMPLES	METHOD		PARAMETER		MATRIX
23	OLM04.3	TCL			AQ
4.	OLM04.3	voc	,5		AQ
23	ILM05.2 ICP-AES TM+CN+HG				AQ
9	ILM05.2 ICP-AES TAL (DM)				AQ
55	OLM04.3 TCL				SOLID
55	ILM05.2	ICP-AES TM+CN+H	G	·	SOLID

- 1. Quantitation Limits and Quality Control requirements other than those specified in the method or SOW must be included on separate sheet.
- 2. QC filed samples must be included as part of the total number of samples.
- 3. Data validation levels M3 and IM2 require justification.

Special Instructions: ENCORES - 24 SOLIDS SAMPLES. PLEASE SEND THE ELECTRONIC DATA ASAP.

To: Ken Curry/ESC/R3/USEPA/US@EPA

cc:

Subject: Re: 31878 - Elkton Farm

Lisa D. Penix
ESAT RSCC
Lockheed Martin Environmental Services
EPA Environmental Science Center
701 Mapes Road
Fort Meade, MD 20755
Telephone (410) 305 - 3020
Telefax (410) 305 - 3095
email: Penix.Lisa@epamail.epa.gov

---- Forwarded by Lisa Penix/ESC/R3/USEPA/US on 08/15/2003 09:03 AM -----

Chris Hartman <CHartman@mde.state .md.us> To: Lisa Penix/ESC/R3/USEPA/US@EPA

cc: Alex Cox <mcox@mde.state.md.us>

Subject: Re: 31878 - Elkton Farm

08/15/2003 09:02 AM

Yes, MC01N8 (C01N8) was a field blank. Additionally, MC01M8 was also a field blank and Sample C01N7 was a trip blank.

Chris Hartman, Geologist
Maryland Department of the Environment
Environmental Restoration and Redevelopment Program
Site and Brownfields Assessment Team

>>> <Penix.Lisa@epamail.epa.gov> 08/15/03 07:48AM >>> Hi Chris,

The validator had a quick question. Is sample MC01N8 a field blank? Please let me know and I will pass that on to the validator.

THANKS!

Lisa D. Penix
ESAT RSCC
Lockheed Martin Environmental Services
EPA Environmental Science Center
701 Mapes Road
Fort Meade, MD 20755
Telephone (410) 305 - 3020
Telefax (410) 305 - 3095
email: Penix.Lisa@epamail.epa.gov

The information contained in this communication may be confidential, is intended only for the use of the recipient named above, and may be legally privileged.

If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication, or any of its contents, is strictly prohibited.

If you have received this communication in error, please re-send this

communicat	cion to	the	sender	and	delete	the	original	message	and	any	сору	of	it
from your	comput	er s	ystem. '	Thanl	c you.			?					

<<<GWIASIG 0.07>>>

APPENDIX D

Laboratory Case Narrative

USEPA-CLP

COVER PAGE

ode:	CEIMIC Case No: 31878	NRAS No.:	SDG No: MCO	1 <u>P</u> 0
io.:	ILM05.2		٠.	
	EPA Sample No.	Lab Sample ID	,	
		030792-11		
	MC01M1	030792-11 030792-11D	-	
	MC01M1D	030792-115	;	
	MC01M1S	030792-118	-	
	MC01M2 MC01M3	030792-12		
	MC01M4	030792-13	_	
		030792-15		
*	MC01M8	030792-15		
	MCO1N1	030792-17	_	
	MC01N2	030792-17		
	MC01N3 MC01N4	030792-18	<u> </u>	-
.*	MC01N8	030792-19	- ·	•
•	·	030792-01		· ·
	MC01P0 MC01P0D	030792-01D	–	•
. '	MC01P0B	030792-01B		-
		030792-02	_	
	MC01P1 MC01P2	030792-02		•
•	MC01P3	030792-04		•
	MC01P4	030792-05		•
	MC01P5	030792-06		
	RCOIFS	030772 00	-	^ -
			ICP-AES	ICP-MS
e ICP-A	ES and ICP-MS interelement corrections	(Yes/No)	YES	<u>NO</u>
lied?				
-:	TO 4 TOD NO bestemand connections	(Yes/No)	YES	NO
e ICP-A lied?	ES and ICP-MS background corrections	(IEB/NO)		
	s, were raw data generated before			
annli	cation of background corrections?	(Yes/No)	NO .	NO
appra.	out20m 02 240.510		• 1	
ments:		s ·		i
				(
				
				, .
				4
ertify	that this data package is in compliance	with the terms and condition	ns of the	
tract.	both technically and for completeness, f	for other than the condition	s detailed 🧢	
TO De	clease of the data contained in this hard	copy data package and in the of electronic	e computer-r	eadable dat

COVER PAGE

Title:

Ryan Montalbano

Inorganic Laboratory Supervisor

ILM05.2

USEPA-CLP

COVER PAGE

	BIMIC	Case No:	31878	NRAS	No.:	,	SDG No:	MC01P0	
7 No.: <u>I</u>	LM05.2								
	E	PA Sample No.			Lab Samp	le ID			
		C01P6	, .		030792-	07			
	<u></u>	C01P9			030792-		•		
	_	C01Q0			030792-	09	· ·	•	
	M	C01Q2			030792-	10			
		•	•				-	~	
						•			
				•				· ·	
		•						•	
		٠,	· ,						
				•					
		,			, ,		*		-
					ř)		•	
		-1	•						
•						, *			•
		•						•	
			•						
•		•						1 4	
•		· · · · · · · · · · · · · · · · · · ·		. ,			ICP-	AES ICP-MS	
re TCP-AKS	and ICP	-MS interele	ment corrections			(Yes/No)			
re ICP-AES	and ICP	-MS intereler	ment corrections			(Yes/No)	ICP-		_
plied?		, ·					YE	S NO	_
plied? ore ICP-AES		, ·	ment corrections			(Yes/No) (Yes/No)		S NO	_
plied? ore ICP-AES oplied?	and ICF	?-MS backgrou	nd corrections				YE	S NO	-
plied? re ICP-AES plied? If yes,	and ICP	, ·	nd corrections		Ar.		YE	s NO	-
plied? re ICP-AES plied? If yes,	and ICP	-MS backgrou w data genera	nd corrections		Ar.	(Yes/No)	YE	s no	_
plied? re ICP-AES plied? If yes, applicat	and ICP	P-MS backgroun w data genera background co	nd corrections		Xr.	(Yes/No)	YE	s no	-
plied? re ICP-AES plied? If yes, applicat	and ICP	-MS backgrou w data genera	nd corrections		Nr.	(Yes/No)	YE	s no	
plied? are ICP-AES plied? If yes,	and ICP	P-MS backgroun w data genera background co	nd corrections		\(\alpha\)	(Yes/No)	YE	s no	-
plied? re ICP-AES plied? If yes, applicat	and ICP	P-MS backgroun w data genera background co	nd corrections		Λ:	(Yes/No)	YE	s no	-
plied? re ICP-AES plied? If yes, applicat	and ICP	P-MS backgroun w data genera background co	nd corrections			(Yes/No)	YE	s no	

SDG Narrative

Laboratory Name: Ceimic Corporation

Case No.: 31878 SDG No.: MC01P0 Contract: 68W02063

Ceimic Project No.: 030792

The following ILM05.2 (ICP-AES) twenty aqueous samples were received at Ceimic Corporation on June 25, 26, and 27, 2003:

EPA ID	Ceimic ID
MC01M1	030792-11
MC01M2	030792-12
MC01M3	030792-13
MC01M4	030792-14
MC01M8	030792-15
MC01N1	030792-16
MC01N2	030792-17
MC01N3	030792-18
MC01N4	030792-19
MC01N8	030792-20
MC01P0	030792-01
MC01P1	030792-02
MC01P2	030792-03
MC01P3	030792-04
MC01P4	030792-05
MC01P5	030792-06
MC01P6	030792-07
MC01P9	030792-08
MC01Q0	030792-09
MC01Q2	030792-10

Comments on Data Package

The samples for case 31878 were received for ICP-AES, mercury, and cyanide analysis. Of these, samples MC0M1, MC0M2, MC0M3, MC0M4, and MC0M5 were instead sent for dissolved metals (by ICP-AES) and dissolved mercury analysis. The samples arrived after being filtered and preserved by the samplers, as there was no indication otherwise on the Traffic Reports / Chains of Custody.

The above samples were digested and analyzed in accordance with the Inorganic Statement of Work (SOW) ILM05.2.

QA/QC Samples:

Matrix spike and duplicate analysis, as well as serial dilution, were performed on samples MC01P0 for total metals, total mercury, and cyanide, and MC01M1 for dissolved metals and dissolved mercury. Post-digestion spikes were not required.

The TR/COCs also specified an additional QC analysis on sample MC01N1; this was cancelled after consultation with Holly Sturdayant of the Sample Management Office.

Observations:

A "U" flag in the C column on the sample result forms (Form I-IN) indicates that the concentration of that analyte in the sample is undetected at the method detection limit (MDL). If analytes are detected between the Contract Required Detection Limits (CRDL) and the MDL, a "J" flag is shown in the C column on the Form I-IN.

"*", "N", and "E" qualifiers do not apply to this SDG.

Deviations from Contract:

None.

End of Case Narrative.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Ryan C. Montalbano

Supervisor, Inorganic Laboratories

07/14/03

Date

USEPA - CLP

COVER PAGE

Code:	CRIMIC Case No: 31878	NRAS No.: 31442	SDG No: MCO	107
No.:	ILM05.2			
	EPA Sample No.	Lab Sample ID		-
٠.	γ · · · · · · · · · · · · · · · · · · ·	· . •		
•	MC01Q7	030793-01		
	MC01Q8	030793-02		
	MC01Q9	030793-03		
	MC01R0	030793-04	<u> </u>	
	MC01R1	030793-05		
	MC01R3	030793-06		
	MC01R3D	030793-06D	 ·	
	MC01R3S	030793-06S		
	MC01R4	030793-07	<u>. *</u>	
	MC01R8	030793-08		
	MC01R9	030793-09	· · · ·	
	MC01S0	030793-10	<u>.</u>	
	MC01S1	030793-11		
	MC01S2	030793-12		
	MC0186	030793-13		•
	MC01S8	030793-14		
	MC01S9	<u>030793-15</u>		•
	MC01T3	030793-16	<u>. </u>	
	MC01T4	030793-17	· .	
	MC01T5	030793-18	·	
			ICP-AES	ICP-MS
e ICP-A	MES and ICP-MS interelement corrections	(Yes/No)	YES	мо
lied?			•	
:		•	,	
é ICP-A lied?	MES and ICP-MS background corrections	(Yes/No)	YES	NO
	s, were raw data generated before	•	•	•
	cation of background corrections?	(Yes/No)	NO .	мо
appra	Judeou 01 20013	(555, 557		
ments:				
. ———				
<u> </u>			<u> </u>	
		wish the second and date	ong of the	
ertify	that this data package is in compliance whoth technically and for completeness. for	with the terms and condition other than the condition	ons of the	
tract,	both technically and for completeness, for	or other than the condition	ns detailed	adable da
tract, ove. Re	both technically and for completeness, for elease of the data contained in this hards	or other than the condition copy data package and in the	ns detailed	adable da
tract, ve. Re mitted	both technically and for completeness, for	or other than the condition copy data package and in the electronic	ons detailed the computer-re	adable dai
tract, ove. Remitted unsmissi	both technically and for completeness, for elease of the data contained in this hards on diskette (or via an alternate means of	or other than the condition copy data package and in the electronic been authorized by the La	ons detailed the computer-re	adable dan
tract, ove. Remitted unsmissi	both technically and for completeness, for elease of the data contained in this hards on diskette (or via an alternate means of lon, if approved in advance by USEPA) has	or other than the condition copy data package and in the electronic been authorized by the La	ons detailed the computer-re	adable dat
ntract, ove. Re omitted unsmissi	both technically and for completeness, for elease of the data contained in this hards on diskette (or via an alternate means of lon, if approved in advance by USEPA) has the Manager's designee, as verified by t	or other than the condition copy data package and in the electronic been authorized by the La	ons detailed the computer-re	adable dat
tract, ve. Remitted unsmissi	both technically and for completeness, for elease of the data contained in this hards on diskette (or via an alternate means of ion, if approved in advance by USEPA) has a the Manager's designee, as verified by the manager's designee, as verified by the manager's designee.	or other than the condition copy data package and in the electronic been authorized by the La	ns detailed the computer-re	adable dat

8

USEPA - CLP

COVER PAGE

.		W-	21.020			1449	en.	No. 10	1107
Code:	CRIMIC	Case No:	31878	NRAS	3 No.: 3	1442	SDC	No: MC	0107
No.:	ILM05.	<u>2</u>		,		a a			
-		EPA Sample No	5 '•	-	Lab Samp	le ID		;	,
		MC01T6			030793-1	L9	· ,	•	
		MC01T7			030793-2	20			
				. ,	•				,
	,		•	•	· ·				=
٠.			, e ^t						
			· · · · · · · · · · · · · · · · · · ·						
							•	•	,
•								**	
				•				1 4 - 1	
					•			•	
			:			,			
•			,			٠			
		-				•			
				,				,	
					•	•			,
•	,	•	·						
			*					ICP-AES	ICP-MS
						/** /**- \		7770	270
re ICP-A plied?	ES and I	CP-MS interele	ment correcti	ons		(Yes/No)		YES	NO
,,	,	•					: .	• •	
	ES and I	CP-MS backgrou	nd correction	s	•	(Yes/No)		YES	NO
plied?	·/	• • • • • • • • • • • • • • • • • • • •					*		
		raw data gener f background c				(Yes/No)		МО	NO
appri.	Cacaon O					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
mments:								• .	
						1	· .		
							;	*, .	
	 		 -				·	1	
	,								
		_		•••					
ontract,	both te	is data package chnically and : f the data con	for completene	ss, for o	ther than	the conditi	.ons d	etailed	eadable (
ubmitted ransmiss:	on disk	ette (or via a approved in ad nager's design	n alternate me vance by USEPA	ans of el	ectronic mauthoriz	ed by the I			
		8/c/m		•	•	· .		•	
		-	, da						
;),	. 1	/ ~ ~ ~	. <i>E III</i>	Name		n Montalba			

ILM05.2

SDG Narrative

Laboratory Name: Ceimic Corporation

Case No.: 31878 SDG No.: MC01Q7 Contract: 68W02063

Ceimic Project No.: 030793

The following ILM05.2 (ICP-AES) twenty sediment samples were received at Ceimic Corporation on June 25 and 30, 2003:

EPA ID		Ceimic ID
MC01Q7	. ,	030793-01
MC01Q8		030793-02
MC01Q9	• . •	030793-03
MC01R0	•	030793-04
MC01R1		030793-05
MC01R3		030793-06
MC01R3D		030793-06D
MC01R3S		030793-06S
MC01R4		030793-07
MC01R8	·	030793-08
MC01R9		030793-09
MC01S0		030793-10
MC01S1		030793-11
MC01S2		030793-12
MC01S6		030793-13
MC01S8	•	030793-14
MC01S9		030793-15
MC01T3		030793-16
MC01T4		030793-17
MC01T5		030793-18
MC01T6	:	030793-19
MC01T7	,	030793-20

Comments on Data Package

The samples for case 31878 were received for ICP-AES, mercury, and cyanide analysis. The above samples were digested/distilled and analyzed in accordance with the Inorganic Statement of Work (SOW) ILM05.2.

Sample MC01Q8, which is listed on the Traffic Reports / Chains of Custody as arriving at CEIMIC on June 25, arrived in a separate shipment without a TR/COC on June 30. This information was relayed to Holly Sturdavant of the Sample Management Office on July 1.

QA/QC Samples:

Matrix spike and duplicate analysis, as well as serial dilution, were performed on samples MC01R3. A post-digestion spike was required for antimony, arsenic, lead, selenium, and thallium. A post-distillation spike was required for cyanide.

Observations:

A "U" flag in the C column on the sample result forms (Form I-IN) indicates that the concentration of that analyte in the sample is undetected at the method detection limit (MDL). If analytes are detected between the Contract Required Detection Limits (CRDL) and the MDL, a "J" flag is shown in the C column on the Form I-IN.

The "N" qualifier applies to Sb, As, Pb, Se, Tl, and CN. The "E" qualifier applies to Ni.

Deviations from Contract:

None.

End of SDG Narrative.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Ryan C. Montalbano

Date

08/06/03

Supervisor, Inorganic Laboratories

USEPA-CLP

COVER PAGE

NRAS No.:	SDG No: MC0	1W1
Lab Sample ID		
030794-02		: .
	- .	
		~
	-	
	, -	
		
	_	
	- .	
_		•
	_	.*
_	_	
	_	•
	_	
030794-13		
030794-14	<u> </u>	
030794-15		
030794-01		
030794-16	_	
030794-17	<u> </u>	
030794-18		
	— ICP-AES	ICP-MS
(Yes/No)	YES	NO
	J.	•
(Yes/No)	YES	NO
		
	•	
(Yes/No)	NO .	NO
,		
	•	
	į.	
		ion
		·····
	030794-14 030794-15 030794-01 030794-16 030794-17 030794-18 (Yes/No)	030794-02 030794-03 030794-04 030794-05 030794-06 030794-09 030794-09 030794-09D 030794-10 030794-11 030794-12 030794-13 030794-14 030794-15 030794-01 030794-16 030794-16 030794-18 ICP-AES (Yes/No) YES

COVER PAGE

ILM05.2

SDG Narrative

Laboratory Name: Ceimic Corporation

Case No.: 31878 SDG No.: MC01W1 Contract: 68W02063

Ceimic Project No.: 030794

The following ILM05.2 (ICP-AES) eighteen soil samples were received at Ceimic Corporation on June 25 and 26, 2003:

EPA ID	Ceimic ID
MC01R2	030794-02
MC01R5	030794-03
MC01R6	030794-04
MC01R7	030794-05
MC01S3	030794-06
MC01S4	030794-07
MC01S5	030794-08
MC01S7	030794-09
MC01T0	030794-10
MC01T1	030794-11
MC01T2	030794-12
MC01T8	030794-13
MC01T9	030794-14
MC01W0	030794-15
MC01W1	030794-01
MC01X7	030794-16
MC01X8	030794-17
MC01Y0	030794-18

Comments on Data Package

The samples for case 31878 were received for ICP-AES, Mercury, and Cyanide analyses. The above samples were digested/distilled and analyzed in accordance with the Inorganic Statement of Work (SOW) ILM05.2.

QA/QC Samples:

Matrix spike and duplicate analysis, as well as serial dilution, were performed on sample MC01S7. A post-digestion spike was required for antimony and lead.

Observations:

A "U" flag in the C column on the sample result forms (Form I-IN) indicates that the concentration of that analyte in the sample is undetected at the method detection limit (MDL). If analytes are detected between the Contract Required Detection Limits (CRDL) and the MDL, a "J" flag is shown in the C column on the Form I-IN.

The "*" qualifier applies to lead. The "N" qualifier applies to antimony and lead. The "E" qualifier applies to cobalt, lead, and potassium.

Deviations from Contract:

Iron is detected in the preparation blank at a concentration of 27.5 mg/kg. All samples in this SDG have a concentration greater than ten times this amount.

End of SDG Narrative.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Ryan C. Montalbano

Supervisor, Inorganic Laboratories

07/25/03

Date